Author:
Zaykovskaya Anna V.,Evseenko Vasily A.,Olkin Sergey Е.,Pyankov Oleg V.
Abstract
Introduction. The rapid spread of a new coronavirus infection among populations in many countries worldwide has contributed to the genetic evolution of the virus, resulting in the emergence of multiple genetic variants of the SARS-CoV-2 coronavirus. Mutations in the viral genome can affect the ability of the virus to bypass the immune system and complicate development of diagnostic and prophylactic drugs. Data on the neutralizing activity of the sera obtained against previously circulating genetic variants of the virus in relation to current SARS-CoV-2 strains may serve as a scientific basis for the selection of the antigens in vaccine development. The aim of this work was to study cross-reactivity of SARS-CoV-2 coronavirus strains belonging to different genetic variants, which were isolated in the territory of the Russian Federation during 20202022 in the neutralization reaction using mouse hyperimmune sera. Materials and methods. Ten strains of SARS-CoV-2 coronavirus belonging to different genetic variants were used (three non-VOC strains, alpha, beta, gamma, delta, delta+AY, omicron 1 and omicron 2). The hCoV-19/Australia/VIC01/2020 strain (Wuhan) was included in the study as a prototypical variant. BALBc mice were immunized with inactivated concentrated antigen mixed with a 1:1 adjuvant, which was a virus-like immunostimulatory complex based on Quillaja saponaria (Quillaja saponaria). The antibody titer was determined in the neutralization reaction. Results. Essential decrease of neutralizing ability of antibodies specific to non-vOC genetic variants of SARS-CoV-2 coronavirus was revealed against beta VOC and to a lesser degree against alpha and gamma VOC variants. The differences in the neutralizing activity level of antibodies for alpha and beta VOC variants are not significant among themselves, and with gamma VOC variants there are no significant differences. Neutralizing ability of antibodies specific to delta VOC against alpha and beta VOC variants decreased 4-fold. Neutralizing activity of sera obtained to omicron 1 and 2 variants in relation to the prototype coronavirus variant was reduced 18-fold, to the gamma variant 12-fold, to delta variants more than 30-fold; for other variants it was even lower. Conclusions. The results obtained testify to the presence of cross-reactivity between strains of coronavirus belonging to genetic lines Wuhan, alpha, beta, gamma; it is weaker for delta variants. Mutations in the genome of VOC omicron variants led to a significant decrease in antigenic cross-links with earlier genetic variants of the coronavirus. These findings explain the low efficacy of vaccines based on the Wuhan strain, synthetic immunogens, and recombinant proteins based on it against omicron VOC variants, which have caused a rise in morbidity since early 2022, as well as cases of re-infection of humans with new genetic variants of the coronavirus.
Subject
Infectious Diseases,Immunology,Immunology and Allergy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献