Implementation of Faulty Sensor Detection Mechanism using Data Correlation of Multivariate Sensor Readings in Smart Agriculture

Author:

Malik Ahmed Dhahir,Jamil Ansar,Omar Khaldoon Ammar,Wahab Mohd Helmy AbdORCID

Abstract

Through sensor networks, agriculture can be connected to the IoT, which allows us to create connections among agronomists, farmers, and crops regardless of their geographical differences. Faulty sensor detection is critical in IoT. When a sensor becomes faulty, missing data and/or bad data is provided to the control and management systems, which may lead to potential malfunction or even system failures. Because of this, a sensor fault detection mechanism must be implemented in an IoT system to eliminate this potential fault. This paper focuses on the implementation of a faulty sensor detection mechanism using data correlation among multivariate sensor readings, which is called Multivariate Faulty Sensor Detection Mechanism (Multi-FSDM) in a smart agriculture system. The smart agriculture system is attached with multi-variate sensors, which are moisture, temperature, and water sensor. These sensors are connected to Arduino UNO, which is equipped with an ESP8266 Wi-Fi module for internet connectivity. ThingsBoard is selected as the IoT cloud platform. The sensor readings are collected periodically and send to the cloud via the internet. Multi-FSDM calculates the correlation between each sensor reading to determine the health condition of each sensor. When all sensors are in good condition, all sensor readings are correlated with each other. However, when any sensor becomes faulty, sensor readings become uncorrelated. Once uncorrelated sensor readings occur, this means a faulty sensor is detected. Based on the findings, it is proven that Multi-FSDM can detect each sensor state on the smart agriculture system either in a good or faulty condition. When a sensor becomes faulty, Multi-FSDM detects and determines the faulty sensor successfully.

Publisher

International Association for Educators and Researchers (IAER)

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BCoT-Based Smart Manufacturing: An Enhanced Precise Measurement Management System;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023

2. Application of Automatic Motor Control System Based on Sensor Technology;Wireless Communications and Mobile Computing;2022-07-27

3. Design and Analysis of Intelligent Agricultural Monitoring System Based on Biological Intelligence Optimization Algorithm;Mathematical Problems in Engineering;2022-06-24

4. Application of Internet of Things and Cloud Computing to Enhance the Agro-productivity;Proceedings of International Conference on Communication and Artificial Intelligence;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3