Design and Analysis of Intelligent Agricultural Monitoring System Based on Biological Intelligence Optimization Algorithm

Author:

Chen Zhiqin1ORCID,Liao Zhihao1,Qian Deming1,Li Jie2

Affiliation:

1. School of Electronic Commerce, Jieyang Polytechnic, Jieyang, Guangdong 522000, China

2. Jieyang Administration for Market Regulation, Jieyang, Guangdong 522000, China

Abstract

The traditional optimization method has insufficient intelligence, slow operation speed, and some problems in the calculation of optimal parameters when facing the relationship between too large sample size and complex thread. The biological intelligence optimization algorithm is based on the genetic and evolutionary mechanism of the genetic system. The smart agricultural system is the application of new IOT technology in the field of smart agriculture, mainly including real-time monitoring, wireless monitoring, and remote image and analysis functions. Through this topic, it is concluded that (1) when the parameter is set to μ = 0.02, β = 0.99, the deviation of the optimal value = 1.74, the deviation of the average value = 3.86, the standard deviation of the experimental value = 3.81, the performance evaluation = 2.68, and the maximum number of peaks = 4. It can give full play to the advantages of various algorithms and learn from each other's strengths. (2) The sNIOA algorithm is the best. Compared with the NIOA algorithm, the accuracy of N is increased by 50% and the accuracy of L = 8 is increased by 20%. Compared with the NGA algorithm, the error of I is reduced by 23.5% and the offset of M is reduced. NPSO algorithm pm performance is improved by 20%, and pmk peak value is reduced by 20%. The domestic research on smart agriculture has experienced explosive growth, and the research has been carried out from the concept of smart agriculture, related technologies, constraints, industrial chain, etc., to provide theoretical guidance for the development of smart agriculture. The worst algorithm parameter is the NIOA model whose offset increases little, the performance decreases by 20%, and the peak value becomes worse. (3) The smart agriculture project uses the latest Internet of Things and cloud computing technology, and based on the analysis of big data and artificial intelligence technology, a new service form is proposed, that is, a cloud, network, and platform composite service system to establish a regional closed-loop ecological chain integrating agricultural production, processing, and marketing. (4) In the biological genetic algorithm model, the recall rate of Cp is low, the ROC curve fluctuates greatly, the specificity AEa is poor, and the sensitivity is not high. Using the integrated technology integrating GIS technology, RS technology, spatial statistics, mathematical models, and other methods, based on the differences of various temporal and spatial scales and their monitoring methods, combined with regression model and spatial sampling method, quantitative analysis was performed, and its influencing factors were analyzed. The comparison shows that the optimal F1 score of biological intelligence optimization parameters is up to 23% higher, the accuracy rate Ao is increased by 20%, and the accuracy rate is high.

Funder

Science and Technology Program of Jieyang

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference26 articles.

1. Adoption consistency of climate smart agriculture practices among farmers of vulnerable areas to flood in Assam;S. Barman;Indian Research Journal of Extension Education,2021

2. The potential contribution of carbon sequestration in soil and forest to enhanced climate smart agriculture in Ethiopia;G. Asefa;Journal of Earth Science and Climatic Change,2021

3. Evaluating Knowledge, Attitudes and Practices of Livestock Value Chain Actors on Climate Smart Agriculture/Livestock (CSA/L) in Kajiado County, Kenya

4. Coupling mechanism and development prospect of innovative ecosystem of clean energy in smart agriculture based on blockchain

5. Precision medicine in breast cancer: From biological imaging to artificial intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3