A Machine Learning Approach for Improving the Performance of Network Intrusion Detection Systems

Author:

Azizan Adnan Helmi,Mostafa Salama A.,Mustapha Aida,Foozy Cik Feresa Mohd,Wahab Mohd Helmy AbdORCID,Mohammed Mazin Abed,Khalaf Bashar Ahmad

Abstract

Intrusion detection systems (IDS) are used in analyzing huge data and diagnose anomaly traffic such as DDoS attack; thus, an efficient traffic classification method is necessary for the IDS. The IDS models attempt to decrease false alarm and increase true alarm rates in order to improve the performance accuracy of the system. To resolve this concern, three machine learning algorithms have been tested and evaluated in this research which are decision jungle (DJ), random forest (RF) and support vector machine (SVM). The main objective is to propose a ML-based network intrusion detection system (ML-based NIDS) model that compares the performance of the three algorithms based on their accuracy and precision of anomaly traffics. The knowledge discovery in databases (KDD) methodology and intrusion detection evaluation dataset (CIC-IDS2017) are used in the testing which both are considered as a benchmark in the evaluation of IDS. The average accuracy results of the SVM is 98.18%, RF is 96.76% and DJ is 96.50% in which the highest accuracy is achieved by the SVM. The average precision results of the SVM is 98.74, RF is 97.96 and DJ is 97.82 in which the SVM got a higher average precision compared with the other two algorithms. The average recall results of the SVM is 95.63, RF is 97.62 and DJ is 95.77 in which the RF achieves the highest average of recall than SVM and DJ. In overall, the SVM algorithm is found to be the best algorithm that can be used to detect an intrusion in the system.

Publisher

International Association for Educators and Researchers (IAER)

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3