Ensemble learning approach to enhancing binary classification in Intrusion Detection System for Internet of Things

Author:

Soni 1,Remli Muhammad Akmal2,Mohd Daud Kauthar3,Amien Januar Al4

Affiliation:

1. Faculty of Computer Sciences, Universitas Muhammadiyah Riau, Pekanbaru, Riau Indonesia and Faculty of Data Science and Computing, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia

2. Faculty of Data Science and Computing, Universiti Malaysia Kelantan and Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia

3. Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia

4. Universitas Muhammadiyah Riau, Pekanbaru, Riau Indonesia and Faculty of Data Science and Computing, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia

Abstract

The Internet of Things (IoT) has experienced significant growth and plays a crucial role in daily activities. However, along with its development, IoT is very vulnerable to attacks and raises concerns for users. The Intrusion Detection System (IDS) operates efficiently to detect and identify suspicious activities within the network. The primary source of attacks originates from external sources, specifi-cally from the internet attempting to transmit data to the host network. IDS can identify unknown attacks from network traffic and has become one of the most effective network security. Classification is used to distinguish between normal class and attacks in binary classification problem. As a result, there is a rise in the false positive rates and a decrease in the detection accuracy during the model's training. Based on the test results using the ensemble technique with the ensemble learning XGBoost and LightGBM algorithm, it can be concluded that both binary classification problems can be solved. The results using these ensemble learning algorithms on the ToN IoT Dataset, where binary classification has been performed by combining multiple devices into one, have demonstrated improved accuracy. Moreover, this ensemble approach ensures a more even distribution of accuracy across each device, surpassing the findings of previous research.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3