Abstract
ObjectiveWe applied a precision medicine–based machine learning approach to discover underlying patient characteristics associated with differential improvement in knee osteoarthritis symptoms following standard physical therapy (PT), internet-based exercise training (IBET), and a usual care/wait list control condition.MethodsParticipants (n = 303) were from the Physical Therapy vs Internet-Based Training for Patients with Knee Osteoarthritis trial. The primary outcome was the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) total score at 12-month follow-up. Random forest-informed tree-based learning was applied to identify patient characteristics that were critical to improving outcomes, and patients with those features were grouped.ResultsAge, BMI, and Brief Fear of Movement (BFOM) score, all at baseline, were identified as characteristics that effectively divided participants, creating 6 subgroups. Assigning treatments according to these models, compared to assigning a single best treatment to all patients, resulted in greater improvements of the average WOMAC at 12 months (P= 0.01). Key patterns were that IBET was the optimal treatment for patients of younger age and low BFOM, whereas PT was the optimal treatment for patients of older age, high BFOM, and BMI (kg/m2) between 26.3 and 37.2.ConclusionThese results suggest that easily assessed patient characteristics including age, fear of movement, and BMI could be used to guide patients toward either home-based exercise or PT, though additional studies are needed to confirm these findings. (ClinicalTrials.gov:NCT02312713)
Publisher
The Journal of Rheumatology
Subject
Immunology,Immunology and Allergy,Rheumatology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献