Use of machine learning in osteoarthritis research: a systematic literature review

Author:

Binvignat MarieORCID,Pedoia Valentina,Butte Atul J,Louati Karine,Klatzmann David,Berenbaum FrancisORCID,Mariotti-Ferrandiz Encarnita,Sellam Jérémie

Abstract

ObjectiveThe aim of this systematic literature review was to provide a comprehensive and exhaustive overview of the use of machine learning (ML) in the clinical care of osteoarthritis (OA).MethodsA systematic literature review was performed in July 2021 using MEDLINE PubMed with key words and MeSH terms. For each selected article, the number of patients, ML algorithms used, type of data analysed, validation methods and data availability were collected.ResultsFrom 1148 screened articles, 46 were selected and analysed; most were published after 2017. Twelve articles were related to diagnosis, 7 to prediction, 4 to phenotyping, 12 to severity and 11 to progression. The number of patients included ranged from 18 to 5749. Overall, 35% of the articles described the use of deep learning And 74% imaging analyses. A total of 85% of the articles involved knee OA and 15% hip OA. No study investigated hand OA. Most of the studies involved the same cohort, with data from the OA initiative described in 46% of the articles and the MOST and Cohort Hip and Cohort Knee cohorts in 11% and 7%. Data and source codes were described as publicly available respectively in 54% and 22% of the articles. External validation was provided in only 7% of the articles.ConclusionThis review proposes an up-to-date overview of ML approaches used in clinical OA research and will help to enhance its application in this field.

Funder

French Society of Rheumatology

Sorbonne Université

Publisher

BMJ

Subject

Immunology,Immunology and Allergy,Rheumatology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3