Pathways of Microvascular Permeability in the Synovium of Normal and Diseased Human Knees

Author:

SIMKIN PETER A.,BASSETT JOHN E.

Abstract

Objective.Our study uses the entire proteomes of serum and synovial fluid (SF) to characterize the avenues of microvascular egress of plasma proteins, and quantifies that traffic in normal and diseased human knees.Methods.Paired aliquots of serum and SF were collected from 17 knees of 11 subjects who died without evident joint disease and 16 patients with clinical effusions, fractionated by gel filtration chromatography and analyzed as continuous plots of the SF/serum concentration ratio versus molecular radius from 1 to 12 nanometers (nm). Curve-stripping methodology, a 3-pore model, and known protein kinetics were then applied to estimate the dimensions of and the net outflow through fenestral, “small,” and “large” apertures in the microvascular endothelium.Results.The 3-pore model correlated highly with the observed data (r = 0.992 in normal and 0.980 in arthritis), yielding the following mean values: for the fenestra, the normal radius (nm) was 1.75 and the effused 3.5, and the normal flow (μl/min) was 1.74 and the arthritic 22.0; for the small pore, the normal radius was 8.6 and the effused 8.5, and the normal flow was 1.5 and the arthritic flow 9.1; for the large pore, the normal radius was 40 and the effused 36, and the normal flow was 0.24 and the arthritic flow 15.5.Conclusion.These findings provide the first functional definition of synovial, endothelial fenestrae; reveal that the “increased vascular permeability” of inflammation is not limited to interendothelial gaps; present evidence suggesting that glycocalyceal damage and aquaporin upregulation may affect permeability in arthritic synovium; and define a straightforward methodology for interpretation of biomarker concentrations in arthritic SF.

Publisher

The Journal of Rheumatology

Subject

Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3