Development of an intracellularly acting inhibitory peptide selective for PKN

Author:

Shiga Kazuhiro1,Takayama Kentaro2,Futaki Shiroh2,Hutti Jessica E.3,Cantley Lewis C.3,Ueki Katsuko4,Ono Yoshitaka15,Mukai Hideyuki15

Affiliation:

1. Graduate School of Science, Kobe University, Kobe 657-8501, Japan

2. Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan

3. Department of Systems Biology, Harvard Medical School, Boston, MA 02215, U.S.A.

4. Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan

5. Biosignal Research Center, Kobe University, Kobe 657-8501, Japan

Abstract

PKNs form a subfamily of the AGC serine/threonine protein kinases, and have a catalytic domain homologous with that of PKC (protein kinase C) in the C-terminal region and three characteristic ACC (antiparallel coiled-coil) domain repeats in the N-terminal region. The preferred peptide phosphorylation motif for PKNs determined by a combinatorial peptide library method was highly similar to that of PKCs within a 10-amino-acid stretch. Previously reported PKN inhibitory compounds also inhibit PKCs to a similar extent, and no PKN selective inhibitors have been commercially available. We have identified a 15-amino-acid peptide inhibitor of PKNs based on amino acids 485–499 of the C-terminal region of the C2-like domain of PKN1. This peptide, designated as PRL, selectively inhibits the kinase activity of all isoforms of PKN (Ki=0.7 μM) towards a peptide substrate, as well as autophosphorylation activity of PKN in vitro, in contrast with PKC. Reversible conjugation by a disulfide bond of a carrier peptide bearing a penetration accelerating sequence to PRL, facilitated the cellular uptake of this peptide and significantly inhibited phosphorylation of tau by PKN1 at the PKN1-specific phosphorylation site in vivo. This peptide may serve as a valuable tool for investigating PKN activation and PKN-mediated responses.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3