Differential regulation of glucose transport activity in yeast by specific cAMP signatures

Author:

Bermejo Clara1,Haerizadeh Farzad1,Sadoine Mayuri S. C.1,Chermak Diane1,Frommer Wolf B.1

Affiliation:

1. Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, U.S.A.

Abstract

Successful colonization and survival in variable environments require a competitive advantage during the initial growth phase after experiencing nutrient changes. Starved yeast cells anticipate exposure to glucose by activating the Hxt5p (hexose transporter 5) glucose transporter, which provides an advantage during early phases after glucose resupply. cAMP and glucose FRET (fluorescence resonance energy transfer) sensors were used to identify three signalling pathways that co-operate in the anticipatory Hxt5p activity in glucose-starved cells: as expected the Snf1 (sucrose nonfermenting 1) AMP kinase pathway, but, surprisingly, the sugar-dependent G-protein-coupled Gpr1 (G-protein-coupled receptor 1)/cAMP/PKA (protein kinase A) pathway and the Pho85 (phosphate metabolism 85)/Plc (phospholipase C) 6/7 pathway. Gpr1/cAMP/PKA are key elements of a G-protein-coupled sugar response pathway that produces a transient cAMP peak to induce growth-related genes. A novel function of the Gpr1/cAMP/PKA pathway was identified in glucose-starved cells: during starvation the Gpr1/cAMP/PKA pathway is required to maintain Hxt5p activity in the absence of glucose-induced cAMP spiking. During starvation, cAMP levels remain low triggering expression of HXT5, whereas cAMP spiking leads to a shift to the high capacity Hxt isoforms.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3