Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor

Author:

Kong Huihui1,Jones Peter P.1,Koop Andrea1,Zhang Lin1,Duff Henry J.1,Chen S. R. Wayne1

Affiliation:

1. Department of Physiology and Biophysics, Libin Cardiovascular Institute of Alberta, 3330 Hospital Drive N.W., University of Calgary, Calgary, AB, Canada T2N 4N1

Abstract

Caffeine has long been used as a pharmacological probe for studying RyR (ryanodine receptor)-mediated Ca2+ release and cardiac arrhythmias. However, the precise mechanism by which caffeine activates RyRs is elusive. In the present study, we investigated the effects of caffeine on spontaneous Ca2+ release and on the response of single RyR2 (cardiac RyR) channels to luminal or cytosolic Ca2+. We found that HEK-293 cells (human embryonic kidney cells) expressing RyR2 displayed partial or ‘quantal’ Ca2+ release in response to repetitive additions of submaximal concentrations of caffeine. This quantal Ca2+ release was abolished by ryanodine. Monitoring of endoplasmic reticulum luminal Ca2+ revealed that caffeine reduced the luminal Ca2+ threshold at which spontaneous Ca2+ release occurs. Interestingly, spontaneous Ca2+ release in the form of Ca2+ oscillations persisted in the presence of 10 mM caffeine, and was diminished by ryanodine, demonstrating that unlike ryanodine, caffeine, even at high concentrations, does not hold the channel open. At the single-channel level, caffeine markedly reduced the threshold for luminal Ca2+ activation, but had little effect on the threshold for cytosolic Ca2+ activation, indicating that the major action of caffeine is to reduce the luminal, but not the cytosolic, Ca2+ activation threshold. Furthermore, as with caffeine, the clinically relevant, pro-arrhythmic methylxanthines aminophylline and theophylline potentiated luminal Ca2+ activation of RyR2, and increased the propensity for spontaneous Ca2+ release, mimicking the effects of disease-linked RyR2 mutations. Collectively, our results demonstrate that caffeine triggers Ca2+ release by reducing the threshold for luminal Ca2+ activation of RyR2, and suggest that disease-linked RyR2 mutations and RyR2-interacting pro-arrhythmic agents may share the same arrhythmogenic mechanism.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3