A mechanism for epithelial–mesenchymal transition and anoikis resistance in breast cancer triggered by zinc channel ZIP6 and STAT3 (signal transducer and activator of transcription 3)

Author:

Hogstrand Christer1,Kille Peter2,Ackland Margaret Leigh3,Hiscox Stephen4,Taylor Kathryn M.4

Affiliation:

1. Nutritional Sciences Division, King's College London, 3.85 Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.

2. Department of Biosciences, Cardiff University, Main Building, Museum Avenue, Cardiff, CF10 3AT, U.K.

3. School of Life and Environmental Sciences, Burwood Campus, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia

4. Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VIIth Avenue, Cardiff CF10 3NB, U.K.

Abstract

Genes involved in normal developmental processes attract attention as mediators of tumour progression as they facilitate migration of tumour cells. EMT (epithelial–mesenchymal transition), an essential part of embryonic development, tissue remodelling and wound repair, is crucial for tumour metastasis. Previously, zinc transporter ZIP6 [SLC39A6; solute carrier family 39 (zinc transporter), member 6; also known as LIV-1) was linked to EMT in zebrafish gastrulation through a STAT3 (signal transducer and activator of transcription 3) mechanism, resulting in nuclear localization of transcription factor Snail. In the present study, we show that zinc transporter ZIP6 is transcriptionally induced by STAT3 and unprecedented among zinc transporters, and is activated by N-terminal cleavage which triggers ZIP6 plasma membrane location and zinc influx. This zinc influx inactivates GSK-3β (glycogen synthase kinase 3β), either indirectly or directly via Akt or GSK-3β respectively, resulting in activation of Snail, which remains in the nucleus and acts as a transcriptional repressor of E-cadherin (epithelial cadherin), CDH1, causing cell rounding and detachment. This was mirrored by ZIP6-transfected cells which underwent EMT, detached from monolayers and exhibited resistance to anoikis by their ability to continue proliferating even after detachment. Our results indicate a causative role for ZIP6 in cell motility and migration, providing ZIP6 as a new target for prediction of clinical cancer spread and also suggesting a ZIP6-dependent mechanism of tumour metastasis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3