Nitrogen Homoeostasis in man: The Diurnal Responses of Protein Synthesis and Degradation and Amino Acid Oxidation to Diets with Increasing Protein Intakes

Author:

Pacy Paul J.12,Price Gill M.,Halliday David12,Quevedo Marcello R.12,Millward D. Joe12

Affiliation:

1. Nutrition Research Unit, London School of Hygiene and Tropical Medicine, St Pancras Hospital, London, U.K.

2. Nutrition Research Group, Clinical Research Centre, Harrow, Middlesex, U.K.

Abstract

1. The diurnal changes in whole body protein turnover associated with the increasing fasting body nitrogen (N) losses and feeding gains with increasing protein intake were investigated in normal adults. [13C]Leucine, [2H5]phenylalanine and [2H2]tyrosine kinetics, were measured during an 8h primed, continuous infusion during the fasting and feeding phase together with fed-state N turnover assessed with [15N]glycine after 12 days of adaptation to diets containing 0.36 (LP), 0.77 (MP), 1.59 (GP) and 2.07 (HP) g of protein day−1 kg−1. Measurements were also made of fasting and fed resting metabolic rate and plasma hormone levels. 2. Resting metabolic rate in the fasted and fed state was not influenced by dietary protein intake, but was increased by feeding (11-13%, P <0.01) with no influence of dietary protein concentration. Fasting plasma insulin levels were not influenced by protein intake and were increased by feeding independent of protein intake. Fasted but not fed values of insulinlike growth factor-1 increased with protein intake, although no feeding response was observed. Thyroid hormones (free and total tri-iodothyronine) did not change in any state. 3. For leucine with increasing protein intake the increasing fasting losses reflected increasing rates of protein degradation, although the changes were small and only significant between GP and MP intakes. The increasing leucine gain on feeding was associated with increasing rates of protein synthesis and falling rates of protein degradation, reflecting a progressive inhibition of degradation with feeding, and a change from inhibition of synthesis (LP diet) to stimulation (GP and HP diets). Mean daily rates of synthesis and degradation did not change with protein intake. 4. Phenylalanine and tyrosine kinetics were calculated from adjusted values based on leucine kinetics and published data of the hepatic/plasma enrichment ratio. With the increased protein intake, the increasing fasting losses of phenylalanine (GP > MP) were mediated by increasing rates of degradation (paired t-tests). The increasing phenylalanine gain (GP > MP > LP) was due to increasing fed-state rates of synthesis and falling rates of degradation, reflecting a progressive inhibition of degradation, a stimulation of hydroxylation and a variable response of synthesis ranging from inhibition at the lowest intake to stimulation at higher intakes. For tyrosine a similar progressive inhibition of degradation with intake was shown. Mean daily rates of synthesis and degradation (phenylalanine) and degradation (tyrosine) did not change with protein intake. 5. Estimation of protein turnover from 15N excretion in urea and ammonia during 9 h after 1 h intravenous infusion of [15N]glycine in the fed state on the LP, MP and GP diets indicated that neither synthesis nor degradation were influenced by dietary protein level. Synthesis estimated from 15N kinetics was significantly correlated with that determined from leucine kinetics (r = 0.78, n = 14, P <0.01) and from phenylalanine kinetics (r = 0.53, n = 14, P <0.05), and degradation estimated from 15N kinetics was significantly correlated with that determined from leucine kinetics (r = 0.60, n = 14, P <0.05). Thus the [15N]glycine, [13C]leucine and [2H5]phenylalanine methods gave broadly comparable results. 6. We conclude that the feeding response of protein synthesis, degradation and amino acid oxidation reflects the combined impact of insulin and tissue amino acid levels with insulin inhibiting degradation and with amino acids both stimulating synthesis and oxidation and also further inhibiting degradation. Although the dietary protein level influences the extent of these feeding responses, it does not influence the mean daily rate of protein turnover. The rate of whole body protein turnover per se is unlikely to provide an indicator of protein nutritional status.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3