Changes in cytosolic Mg2+ levels can regulate the activity of the plasma membrane H+-ATPase in maize

Author:

Hanstein Stefan1,Wang Xiaozhi2,Qian Xiaoqing2,Friedhoff Peter3,Fatima Ammara1,Shan Yuhua2,Feng Ke2,Schubert Sven1

Affiliation:

1. Institute of Plant Nutrition, Justus Liebig University, 35392 Giessen, Germany

2. College of Environmental Science and Engineering, Yangzhou University, 225009 Yangzhou, P.R. China

3. Institute of Biochemistry, Justus Liebig University, 35392 Giessen, Germany

Abstract

Plant PM (plasma membrane) H+-ATPase, a major consumer of cellular ATP, is driven by the MgATP complex which may dissociate at low cytosolic Mg2+ activity. We investigated whether hydrolytic activity of PM H+-ATPase is inhibited at ATP concentrations exceeding the Mg2+ concentration. Activity in isolated maize PMs was measured at pH 6.5 in the presence of 5 mM Mg2+ (high) or 2 mM Mg2+ (low), whereas K+ was applied at concentrations of 155 mM (high) or 55 mM (low). In all experiments, with membrane vesicles either from roots or leaves, the enzyme activity decreased in the presence of Mg2+-free ATP. At inhibitory ATP concentrations, the activity was not influenced by the K+ concentration. The activity was restored after increasing the Mg2+ concentration. ATP inhibition also occurred at pH 7.5. Kinetic modelling shows that Mg2+-free ATP acted as a competitive inhibitor with a Ki in the range of the Km. Ki decreased by 75% at low K+ concentration. Ki was one order of magnitude lower at pH 7.5 compared with pH 6.5. The observed inhibition is consistent with a concept in which down-regulation of the cytosolic Mg2+ activity is involved in (phyto)hormonal stress responses.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3