Affiliation:
1. Department of Plant Biology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, Frederiksberg C, DK-1871 Denmark;
Abstract
▪ Abstract Most transport proteins in plant cells are energized by electrochemical gradients of protons across the plasma membrane. The formation of these gradients is due to the action of plasma membrane H+ pumps fuelled by ATP. The plasma membrane H+-ATPases share a membrane topography and general mechanism of action with other P-type ATPases, but differ in regulatory properties. Recent advances in the field include the identification of the complete H+-ATPase gene family in Arabidopsis, analysis of H+-ATPase function by the methods of reverse genetics, an improved understanding of the posttranslational regulation of pump activity by 14-3-3 proteins, novel insights into the H+ transport mechanism, and progress in structural biology. Furthermore, the elucidation of the three-dimensional structure of a related Ca2+ pump has implications for understanding of structure-function relationships for the plant plasma membrane H+-ATPase.
Cited by
759 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献