Influence of Ca2+ on the structure of reptilase-derived and thrombin-derived fibrin gels

Author:

Carr M E,Gabriel D A,McDonagh J

Abstract

The effects of Ca2+ ion on the structure of thrombin-derived and reptilase-derived fibrin gels formed at various ionic strengths were studied turbidimetrically. For both enzymes clotting times were shorter, final gel turbidities were higher and fibre mass/length ratios were increased as the ionic strength was lowered. The addition of 5 mM-Ca2+ augmented each of these effects for any given ionic strength. In the thrombin system, Ca2+ increased the final gel turbidity from 0.04 to 0.26 A632.8 at ionic strength 0.15. Under identical conditions in the reptilase system, the final gel turbidity increased from 0.03 A632.8 in the absence of Ca2+ to 0.345 A632.8 in the presence of 5 mM-Ca2+. In the thrombin system, fibre mass/length ratios increased from 0.4 × 10(12) to 6.9 × 10(12) Da/cm in the absence of Ca2+, and from 4.4 × 10(12) to 7.9 × 10(12) Da/cm in the presence of Ca2+, as the ionic strengths were decreased from 0.15 to 0.08 and to 0.11 respectively. In the reptilase system, the mass/length ratios increased from 0.9 × 10(12) to 5.8 × 10(12) Da/cm in the absence of Ca2+, and from 4.8 × 10(12) to 8.7 × 10(12) Da/cm in the presence of Ca2+, as the ionic strengths were decreased from 0.15 to 0.08 and to 0.10 respectively. At ionic strengths below 0.10, the presence of 5 mM-Ca2+ caused precipitation and macroscopic aggregation of fibrinogen upon the addition of either enzyme. In the presence of 5 mM-Ca2+, the fibres composing thrombin-induced and reptilase-induced gels were virtually identical.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3