Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective

Author:

Risser Fanny,Urosev Ivan,López-Morales Joanan,Sun Yang,Nash Michael A.ORCID

Abstract

Abstract The coagulation cascade represents a sophisticated and highly choreographed series of molecular events taking place in the blood with important clinical implications. One key player in coagulation is fibrinogen, a highly abundant soluble blood protein that is processed by thrombin proteases at wound sites, triggering self-assembly of an insoluble protein hydrogel known as a fibrin clot. By forming the key protein component of blood clots, fibrin acts as a structural biomaterial with biophysical properties well suited to its role inhibiting fluid flow and maintaining hemostasis. Based on its clinical importance, fibrin is being investigated as a potentially valuable molecular target in the development of coagulation therapies. In this topical review, we summarize our current understanding of the coagulation cascade from a molecular, structural and biophysical perspective. We highlight single-molecule studies on proteins involved in blood coagulation and report on the current state of the art in directed evolution and molecular engineering of fibrin-targeted proteins and polymers for modulating coagulation. This biophysical overview will help acclimatize newcomers to the field and catalyze interdisciplinary work in biomolecular engineering toward the development of new therapies targeting fibrin and the coagulation system.

Funder

Swiss Nanoscience Institute

Mexico CONACYT

European Research Council

University of Basel

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Structural Biology,Biophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment;ACS Biomaterials Science & Engineering;2024-08-22

2. Stress-Induced Insulin Resistance: Role of Von Willebrand Factor;Hypoglycemia - New Insights [Working Title];2024-07-22

3. Protease-Driven Phase Separation of Elastin-Like Polypeptides;Biomacromolecules;2024-07-09

4. Functional Roles of Furin in Cardio-Cerebrovascular Diseases;ACS Pharmacology & Translational Science;2024-02-07

5. Functional hemostatic hydrogels: design based on procoagulant principles;Journal of Materials Chemistry B;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3