Arthrobacter d-xylose isomerase: protein-engineered subunit interfaces

Author:

Varsani L1,Cui T1,Rangarajan M1,Hartley B S1,Goldberg J2,Collyer C2,Blow D M2

Affiliation:

1. Centre for Biotechnology, Imperial College of Science, Technology and Medicine, London, U.K.

2. Biophysics Section, Imperial College of Science, Technology and Medicine, London S.W.7, U.K.

Abstract

Mutants of Arthrobacter D-xylose isomerase were constructed in which one or two disulphide bridges or additional salt bridges were introduced at the A-A* subunit interfaces. These showed no change in enzyme activity or stability compared with the wild-type enzyme. However, a Tyr253 mutant in which a disulphide bridge was introduced at the A-B* subunit interface showed reduced thermostability that was identical in both oxidized and reduced forms, and also reduced stability in urea. X-ray-crystallographic analysis of the Mn(2+)-xylitol form of oxidized Y253C (the Tyr253→>Cys mutant) showed a changed conformation of Glu185 and also alternative conformations for Asp254, which is a ligand to the Site-[2] metal ion. With fructose, Mg(2+)-Y253C has a similar Km to that of the wild-type, and its Vmax. is also similar below pH 6.4, but declined thereafter. In the presence of Co2+, Y253C has lower activity than wild-type at all pH values, but its activity also declines at alkaline pH. These results suggest that electrostatic repulsion from the new position of Glu185 causes Asp254 to move when His219 is unprotonated, thereby preventing M2+ binding at Site [2]. These results also suggest that subunit dissociation does not lie on the pathway of thermal inactivation of D-xylose isomerase, but that movements of active-site groups are a trigger for conformational changes that initiate the unfolding process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3