Pyrimidine nucleotide metabolism in rat hepatocytes: evidence for compartmentation of nucleotide pools

Author:

Pels Rijcken W R1,Overdijk B1,van den Eijnden D H1,Ferwerda W1

Affiliation:

1. Department of Medical Chemistry, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands

Abstract

Pyrimidine nucleotide metabolism in rat hepatocytes was studied by measurement of the labelling kinetics of the various intermediates after double labelling with [14C]orotic acid and [3H]cytidine, the precursors for the de novo and the salvage pathways respectively. For the uridine nucleotides, differences were found for the 14C/3H ratios in the UDP-sugars, in UMP (of RNA) and in their precursor UTP, suggesting the existence of separated flows of the radioactive precursors through the de novo and the salvage pathways. Higher ratios in the UDP-sugars, which are synthesized in the cytoplasm, and a lower ratio in UMP (of RNA) relative to the 14C/3H ratio in UTP indicated that UTP derived from orotic acid is preferentially used for the cytoplasmic biosynthesis of the UDP-sugars. Uridine, derived from cytidine, is preferentially used for the nuclear-localized synthesis of RNA. In contrast to these findings, the 14C/3H ratios in the cytidine derivatives CMP-NeuAc and CMP (of RNA), and in the liponucleotides CDP-choline and CDP-ethanolamine, were all lower than that in the precursor CTP. This indicates a preferential utilization of the salvage-derived CTP for the synthesis of the liponucleotides as well as for RNA and CMP-NeuAc. Similar conclusions could be drawn from experiments in which the intracellular amounts of several uridine- and cytidine-nucleotide-containing derivatives were increased by preincubating the hepatocytes with unlabelled pyrimidine nucleotides or ethanolamine. Based on these data, we propose a refined model for the intracellular compartmentation of pyrimidine nucleotide biosynthesis in which three pools of UTP are distinguished: a pool of de novo-derived molecules and a pool of salvage-derived molecules, both of which are channelled to the site of utilization; in addition an ‘overflow’ pool exists, consisting of molecules having escaped from channelling. An overflow pool could also be distinguished for CTP, but no discrimination between de novo and salvage-derived molecules could be made.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3