Inositol lipids and TRPC channel activation

Author:

Putney James W.1

Affiliation:

1. National Institute of Environmental Health Sciences, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709 U.S.A.

Abstract

The original hypothesis put forth by Bob Michell in his seminal 1975 review held that inositol lipid breakdown was involved in the activation of plasma membrane calcium channels or ‘gates’. Subsequently, it was demonstrated that while the interposition of inositol lipid breakdown upstream of calcium signalling was correct, it was predominantly the release of Ca2+ that was activated, through the formation of Ins(1,4,5)P3. Ca2+ entry across the plasma membrane involved a secondary mechanism signalled in an unknown manner by depletion of intracellular Ca2+ stores. In recent years, however, additional non-store-operated mechanisms for Ca2+ entry have emerged. In many instances, these pathways involve homologues of the Drosophila trp (transient receptor potential) gene. In mammalian systems there are seven members of the TRP superfamily, designated TRPC1–TRPC7, which appear to be reasonably close structural and functional homologues of Drosophila TRP. Although these channels can sometimes function as store-operated channels, in the majority of instances they function as channels more directly linked to phospholipase C activity. Three members of this family, TRPC3, 6 and 7, are activated by the phosphoinositide breakdown product, diacylglycerol. Two others, TRPC4 and 5, are also activated as a consequence of phospholipase C activity, although the precise substrate or product molecules involved are still unclear. Thus the TRPCs represent a family of ion channels that are directly activated by inositol lipid breakdown, confirming Bob Michell's original prediction 30 years ago.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3