The yeast cyclin-dependent kinase inhibitor Sic1 and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain

Author:

BARBERIS Matteo1,DE GIOIA Luca1,RUZZENE Maria2,SARNO Stefania2,COCCETTI Paola1,FANTUCCI Piercarlo1,VANONI Marco1,ALBERGHINA Lilia1

Affiliation:

1. Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy

2. Dipartimento di Chimica Biologica, Università di Padova, Viale G. Colombo 3, 35121 Padova, Italy

Abstract

In Saccharomyces cerevisiae, Sic1, an inhibitor of Cdk (cyclin-dependent kinase), blocks the activity of S-Cdk1 (Cdk1/Clb5,6) kinase that is required for DNA replication. Deletion of Sic1 causes premature DNA replication from fewer origins, extension of the S phase and inefficient separation of sister chromatids during anaphase. Despite the well-documented relevance of Sic1 inhibition of S-Cdk1 for cell cycle control and genome instability, the molecular mechanism by which Sic1 inhibits S-Cdk1 activity remains obscure. In this paper, we show that Sic1 is functionally and structurally related to the mammalian Cki (Cdk inhibitor) p27Kip1 of the Kip/Cip family. A molecular model of the inhibitory domain of Sic1 bound to the Cdk2–cyclin A complex suggested that the yeast inhibitor might productively interface with the mammalian Cdk2–cyclin A complex. Consistent with this, Sic1 is able to bind to, and strongly inhibit the kinase activity of, the Cdk2–cyclin A complex. In addition, comparison of the different inhibitory patterns obtained using histone H1 or GST (glutathione S-transferase)–pRb (retinoblastoma protein) fusion protein as substrate (the latter of which recognizes both the docking site and the catalytic site of Cdk2–cyclin A) offers interesting suggestions for the inhibitory mechanism of Sic1. Finally, overexpression of the KIP1 gene in vivo in Saccharomyces cerevisiae, like overexpression of the related SIC1 gene, rescues the cell cycle-related phenotype of a sic1Δ strain. Taken together, these findings strongly indicate that budding yeast Sic1 and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3