L-Lysine uptake in giant vesicles from cardiac ventricular sarcolemma: two components of cationic amino acid transport

Author:

Lu Xiaodong1,Zheng Ruifang1,Gonzalez Jorge1,Gaspers Lawrence1,Kuzhikandathil Eldo1,Peluffo R. Daniel1

Affiliation:

1. Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey – New Jersey Medical School, 185 South Orange Avenue, MSB, P.O. Box 1709, Newark, NJ 07101-1709, U.S.A.

Abstract

Cationic L-amino acids enter cardiac-muscle cells through carrier-mediated transport. To study this process in detail, L-[14C]lysine uptake experiments were conducted within a 103-fold range of L-lysine concentrations in giant sarcolemmal vesicles prepared from rat cardiac ventricles. Vesicles had a surface-to-volume ratio comparable with that of an epithelial cell, thus representing a suitable system for initial uptake rate studies. Two Na+-independent, N-ethylmaleimide-sensitive uptake components were found, one with high apparent affinity (Km=222±71 μM) and low transport capacity (Vmax=121±36 pmol/min per mg of vesicle protein) and the other with low apparent affinity (Km=16±4 mM) and high capacity (Vmax=4.0±0.4 nmol/min per mg of vesicle protein). L-Lysine uptake mediated by both components was stimulated by the presence of intravesicular L-lysine as well as by valinomycin-induced membrane hyperpolarization. Altogether, this behaviour is consistent with the functional properties of the CAT-1 and CAT-2A members of the system y+ family of cationic amino acid transporters. Furthermore, mRNA transcripts for these two carrier proteins were identified in freshly isolated rat cardiac myocytes, the amount of CAT-1 mRNA, relative to β-actin, being 33-fold larger than that of CAT-2A. These two transporters appear to function simultaneously as a homoeostatic device that supplies cardiac-muscle cells with cationic amino acids under a variety of metabolic conditions. Analysis of two carriers acting in parallel with such an array of kinetic parameters shows significant activity of the low-affinity component even at amino acid plasma levels far below its Km.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3