Impact of obesity-induced type 2 diabetes on long-term outcomes following stroke

Author:

Bhaskar Sonu12345ORCID

Affiliation:

1. Department of Neurology and Neurophysiology, Liverpool Hospital, Sydney, NSW, Australia

2. The University of New South Wales (UNSW), South West Sydney Clinical School, Sydney, NSW, Australia

3. NSW Brain Clot Bank and Neurovascular Imaging Lab, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia

4. South Western Sydney Local Health District (SWSLHD), South Western Sydney Research, Liverpool, NSW, Australia

5. Western Sydney University, School of Medicine, South Western Sydney Clinical School, Liverpool, NSW, Australia

Abstract

Abstract Diabetes is associated with poor recovery profiles following stroke. The pathophysiological mechanisms by which diabetes mediates neurological recovery after stroke are debatable. A recent paper published in the Clinical Science by Pintana et al. (Clinical Science (2019)133, 1367–1386) provides a possible explanation for the underlying mechanisms of poor long-term motor recovery after stroke in obesity-induced diabetes animal model. Authors report that stroke-induced neurogenesis and parvalbumin (PV)+ interneuron-mediated neuroplasticity is severely impaired due to obesity-induced type 2 diabetes (T2D). Poor long-term motor recovery after stroke in comorbid obese and diabetic mice was not associated with stroke-induced grey or white matter damage. Understanding these mechanisms is crucial to develop therapeutic strategies to improve recovery in the obesity-induced diabetic population. The strength of the present study lies in the use of a comorbid obese/diabetic animal model, which is more likely to reflect the clinical scenario. However, these findings should be understood from the context of this specific animal model and whether these findings hold true for another variant of the obesity/T2D model warrants further consideration. This is an interesting study from the perspective of understanding the stroke pathology in T2D; however, the interaction of microvascular changes (including vascular modelling, angiogenesis), oxidative stress and insulin resistance (IR) associated with T2D and poor recovery profile merit further discussions. Given the increasing burden of obesity, diabetes and/or stroke globally, understanding of mechanisms may be useful in developing cardiovascular risk management pathways in this subgroup of population who are at increased risk of poor clinical outcomes following acute stroke.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3