Intrathoracic airstream temperatures during acute expansions of thoracic blood volume

Author:

Gilbert Ileen A.1,Regnard Jacques2,Lenner K. A.1,Nelson J. A.1,McFadden E. R.1

Affiliation:

1. Airway Disease Center and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, U.S.A.

2. Laboratoire de Physiologie et Département de Pneumologie, CHU, Cochin Port-Royal, Paris, France

Abstract

1. To determine the validity of employing intrathoracic heat flux as a reflection of changes in bronchial blood flow, we used a thermal probe to record airstream temperatures within the tracheobronchial tree in five normal and five asthmatic subjects during isocapnic hyperventilation challenges with and without inflation of the lower limb bladders of a pressure suit. 2. During hyperpnoea, airstream temperatures fell progressively in both subject groups. When blood volume was acutely shifted from the legs into the thorax via antishock trousers, airstream temperatures within the tracheobronchial tree rose and were significantly higher than the temperatures recorded during hyperpnoea alone. In the normal subjects, once hyperpnoea ceased, the rate of airway re-warming was similar whether or not the antishock trousers were inflated. In the asthmatic subjects, however, shifting blood into the thorax attenuated the obstructive response to hyperpnoea and slowed the rate of re-warming. 3. These data demonstrate that changes in airway blood volume are reflected in fluctuations in intrathoracic heat exchange and that disruption of the end hyperpnoea thermal gradient attenuates the airway obstruction that follows hyperpnoea. Since the bronchial blood supply is the major source of heat to the airways, this circulation may play an important role in thermally induced asthma.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3