Alkali-metal-ion- and H+-dependent activation and/or inhibition of intestinal brush-border sucrase. A model involving three functionally distinct key prototropic groups

Author:

Vasseur M1,Van Melle G1,Frangne R1,Alvarado F1

Affiliation:

1. Centre de Recherches sur la Nutrition, Centre National de la Recherche Scientifique, 9 Rue Jules Hetzel, 92190 Meudon, France.

Abstract

For rabbit intestinal brush-border sucrase, a model based on classical Michaelis-Dixon theory cannot fully explain the peculiar antagonistic relationship existing between the substrate and one key proton, Hx, which at acid pH values behaves as a fully competitive inhibitor. In the same pH range, a second proton, Hy, is responsible for changes in catalytic activity and behaves as a mixed-type partially non-competitive inhibitor [Vasseur, Tellier & Alvarado (1982) Arch. Biochem. Biophys. 218, 263-274]. Although involved in the same ionization reaction, these two protons have different kinetic functions, since they are responsible for affinity-type and capacity-type effects respectively. Depending on whether Hx is bound or not, we postulate the enzyme to alternate between two distinct forms differing in their binding properties. The alkali-metal ions Na+ and Li+ have a concentration-dependent biphasic effect on this equilibrium. At low concentrations they facilitate the release of Hx, resulting in K-type activation. At higher concentrations they favour enzyme reprotonation, causing K-type inhibition. On the basic side of the pH spectrum, our results confirm the existence of separate non-competitive effects of the alkali-metal ions, particularly Li+ [Alvarado & Mahmood (1979) J. Biol. Chem. 254, 9534-9541]. To explain the molecular mechanisms underlying the alkali-metal-ion- and H+-dependent effects, we formulate a sucrase model, the three-protons model, in which the acid and basic ionization constants involve respectively two and one key prototropic groups that are functionally distinguishable. A global iterative fit of the relevant general equation to our whole set of data has permitted us to estimate the numerical value of each of the constants constituting the model.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3