Affiliation:
1. Orthopaedic Bioengineering Laboratory, University of California, San Francisco, CA 94143-0514, U.S.A.
Abstract
Intervertebral disc degeneration has been linked in humans to extreme spinal loading regimens. However, mechanisms by which spinal force influences disc cellularity, morphology and consequently biomechanical function are unclear. To gain insight into mechanobiological interactions within the disc, we developed an in vivo murine tail-compression model. Results from this model demonstrate how deviations in spinal stress induce a cycle of altered cell function and morphology as the disc remodels to a new homoeostatic configuration.
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献