How moonlight shapes environments, life histories, and ecological interactions on coral reefs

Author:

Shima Jeffrey S.1ORCID,Osenberg Craig W.2,Alonzo Suzanne H.3,Noonburg Erik G.4,Swearer Stephen E.5

Affiliation:

1. School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand

2. Odum School of Ecology, University of Georgia, Athens, Georgia, U.S.A.

3. Department of Ecology and Evolutionary Biology, University of California at Santa Cruz, Santa Cruz, California, U.S.A.

4. No Current Affiliation, PO Box 1574, Anacortes, Washington, U.S.A.

5. School of BioSciences, University of Melbourne, Parkville, Victoria, Australia

Abstract

The lunar cycle drives variation in nocturnal brightness. For the epipelagic larvae of coral reef organisms, nocturnal illumination may have widespread and underappreciated consequences. At sea, the onset of darkness coincides with an influx of mesopelagic organisms to shallow water (i.e. ‘diel vertical migrants’) that include predators (e.g. lanternfishes) and prey (zooplankton) of zooplanktivorous coral reef larvae. Moonlight generally suppresses this influx, but lunar periodicity in the timing and intensity of nocturnal brightness may affect vertically migrating predators and prey differently. A major turnover of species occurs at sunset on the reef, with diurnal species seeking shelter and nocturnal species emerging to hunt. The hunting ability of nocturnal reef-based predators is aided by the light of the moon. Consequently, variation in nocturnal illumination is likely to shape the timing of reproduction, larval development, and settlement for many coral reef organisms. This synthesis underscores the potential importance of trophic linkages between coral reefs and adjacent pelagic ecosystems, facilitated by the diel migrations of mesopelagic organisms and the ontogenetic migrations of coral reef larvae. Research is needed to better understand the effects of lunar cycles on life-history strategies, and the potentially disruptive effects of light pollution, turbidity, and climate-driven changes to nocturnal cloud cover. These underappreciated threats may alter patterns of nocturnal illumination that have shaped the evolutionary history of many coral reef organisms, with consequences for larval survival and population replenishment that could rival or exceed other effects arising from climate change.

Publisher

Portland Press Ltd.

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3