Affiliation:
1. Departamento de Bioqu(mica, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
Abstract
D-Glyceraldehyde's capacity to mimic the effect of D-glucose on insulin secretion has not yet been sufficiently substantiated. It has been recently proposed, however, that they might act through different mechanisms in insulin-secreting tumoral cells. Therefore, we have performed a dose-related study of both the secretory and metabolic effects of D-glyceraldehyde on islets, which have been compared with those produced by D-glucose. D-Glyceraldehyde's capacity to stimulate secretion was paralleled in a dose-dependent manner by its rate of oxidation to 14CO2. Partial inhibition of D-glyceraldehyde oxidation by beta-iodoacetamide resulted in a proportional decrease in the secretory response. L-Glyceraldehyde, which was apparently very poorly oxidized by islets, did not stimulate secretion. The ratio of the maximum insulin responses D-glyceraldehyde and D-glucose (57%) correlated with the ratio of their respective maximum rates of oxidation (68%). At sub-maximal concentrations there was a potentiation of the secretagogue effects of the hexose by the triose, which was not apparent at a maximum effective dose of glucose. It is concluded that D-glyceraldehyde mimics the secretory effect of glucose because, similarly to the hexose, it is metabolized through islet aerobic glycolysis. The lower potency of D-glyceraldehyde as an insulin secretagogue than D-glucose is determined by the lower capacity of islets to oxidize the triose compared with the hexose. D-Glyceraldehyde, unlike D-glucose, is metabolized in islets to D-lactate. Alternative routes for the metabolism of D-glyceraldehyde might explain some of the secretagogue differences between the triose and the hexose.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献