Metabolic Activation of Glucose Low-Responsive β-Cells by Glyceraldehyde Correlates with Their Biosynthetic Activation in Lower Glucose Concentration Range But Not at High Glucose

Author:

Martens G. A.,Wang Q.,Kerckhofs K.,Stangé G.,Ling Z.,Pipeleers D.

Abstract

Insulin synthesis and release activities of β-cells can be acutely regulated by glucose through its glycolytic and mitochondrial breakdown involving a glucokinase-dependent rate-limiting step. Isolated β-cell populations are composed of cells with intercellular differences in acute glucose responsiveness that have been attributed to differences in glucokinase (GK) expression and activity. This study first shows that glyceraldehyde can be used as GK-bypassing oxidative substrate and then examines whether the triose can metabolically activate β-cells with low glucose responsiveness. Glyceraldehyde 1 mm induced a similar cellular 14CO2 output and metabolic redox state as glucose 4 mm. Using flow cytometric analysis, glyceraldehyde (0.25–2 mm) was shown to concentration-dependently increase the percent metabolically activated cells at all tested glucose concentrations (2.5–20 mm). Its ability to activate β-cells that are unresponsive to the prevailing glucose level was further illustrated in glucose low-responsive cells that were isolated by flow sorting. Metabolic activation by glyceraldehyde was associated with an activation of nutrient-driven translational control proteins and an increased protein synthetic response to glucose, however not beyond the maximal rates that are inducible by glucose alone. It is concluded that glucose low-responsive β-cells can be metabolically activated by the GK-bypassing glyceraldehyde, increasing their acute biosynthetic response to glucose but not their maximal glucose-inducible biosynthetic capacity, which is considered subject to chronic regulation.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3