Multiple polyamine transport systems on the vacuolar membrane in yeast

Author:

TOMITORI Hideyuki1,KASHIWAGI Keiko1,ASAKAWA Tomoko1,KAKINUMA Yoshimi1,MICHAEL Anthony J.1,IGARASHI Kazuei1

Affiliation:

1. Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Abstract

We recently identified a gene (TPO1, YLL028w) that encodes a polyamine transport protein on the vacuolar membrane in yeast [Tomitori, Kashiwagi, Sakata, Kakinuma and Igarashi (1999) J. Biol. Chem. 274, 3265–3267]. Because the existence of one or more other genes for a polyamine transport protein on the vacuolar membrane was expected, we searched sequence databases for homologues of the protein encoded by TPO1. Membrane proteins encoded by the open reading frames YGR138c (TPO2), YPR156c (TPO3) and YOR273c (TPO4) were postulated to be polyamine transporters and, indeed, were subsequently shown to be polyamine transport proteins on the vacuolar membrane. Cells overexpressing these genes were resistant to polyamine toxicity and showed an increase in polyamine uptake activity and polyamine content in vacuoles. Furthermore, cells in which these genes were disrupted showed an increased sensitivity to polyamine toxicity and a decrease in polyamine uptake activity and polyamine content in vacuoles. Resistance to polyamine toxicity in cells overexpressing the genes was overcome by bafilomycin A1, an inhibitor of the vacuolar H+-ATPase. Among the four polyamine transporters, those encoded by TPO2 and TPO3 were specific for spermine, whereas those encoded by TPO1 and TPO4 recognized spermidine and spermine. These results suggest that polyamine content in the cytoplasm of yeast is elaborately regulated by several polyamine transport systems in vacuoles. Furthermore, it was shown that Glu-207, Glu-324 (or Glu-323) and Glu-574 of TPO1 protein were important for the transport activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3