Specificity of two genetically related cell-envelope proteinases of Lactococcus lactis subsp. cremoris towards αs1-casein-(1–23)-fragment

Author:

Exterkate F A1,Alting A C1,Slangen C J1

Affiliation:

1. Netherlands Institute for Dairy Research (NIZO), P.O. Box 20, 6710 BA Ede, The Netherlands

Abstract

The specificity of two genetically related cell-envelope serine proteinases (PI-type and PIII-type) of Lactococcus lactis subsp. cremoris towards the alpha s1-casein-(1-23)-fragment, an important intermediate product of primary chymosin-directed proteolysis in cheese, has been established. Both enzymes showed, at pH 6.5 and under relatively low-ionic-strength conditions, a characteristic, mutually different, cleavage pattern that seems, in the first instance, to be determined by the charge N-terminal to the cleaved bond. With Pi, three cleavage sites were found in the N-terminal positively charged part of the peptide and, with PIII, three sites were found in the C-terminal negatively charged part. Comparison of the specific cleavage sites in this peptide and those in β-casein revealed similarities with respect to the different residues which can occur N-terminally to the cleaved bond. The properties of these substrate residues match with the structural and various interactive features of the respective binding regions of the enzymes predicted on the basis of a close sequence similarity of the lactococcal proteinases with the subtilisin family. A hydrophobic interaction and/or hydrogen-bridge formation seems to govern the binding of the first amino acid residue N-terminal to the scissile bond. The more distantly N-terminally positioned sequence of residues apparently is attracted electrostatically by a negative charge in the binding region of PI and by a positive charge in that of PIII, provided that the opposite charge is is present at the appropriate position in this sequence. Hence a specific electrostatic binding may occur; additionally, hydrophobic interaction and/or hydrogen-bond formation is important.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3