Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors

Author:

BARNETT Stanley F.1,DEFEO-JONES Deborah1,FU Sheng1,HANCOCK Paula J.1,HASKELL Kathleen M.1,JONES Raymond E.1,KAHANA Jason A.2,KRAL Astrid M.1,LEANDER Karen1,LEE Ling L.1,MALINOWSKI John1,McAVOY Elizabeth M.1,NAHAS Debbie D.3,ROBINSON Ronald G.1,HUBER Hans E.1

Affiliation:

1. Department of Cancer Research, Merck and Company, Sumneytown Pike, West Point, PA 19454, U.S.A.

2. Department of Biological Chemistry, Merck and Company, Sumneytown Pike, West Point, PA 19454, U.S.A.

3. Department of Bioprocess Engineering, Merck and Company, Sumneytown Pike, West Point, PA 19454, U.S.A.

Abstract

We developed a high-throughput HTRF (homogeneous time-resolved fluorescence) assay for Akt kinase activity and screened approx. 270000 compounds for their ability to inhibit the three isoforms of Akt. Two Akt inhibitors were identified that exhibited isoenzyme specificity. The first compound (Akt-I-1) inhibited only Akt1 (IC50 4.6 μM) while the second compound (Akt-I-1,2) inhibited both Akt1 and Akt2 with IC50 values of 2.7 and 21 μM respectively. Neither compound inhibited Akt3 nor mutants lacking the PH (pleckstrin homology) domain at concentrations up to 250 μM. These compounds were reversible inhibitors, and exhibited a linear mixed-type inhibition against ATP and peptide substrate. In addition to inhibiting kinase activity of individual Akt isoforms, both inhibitors blocked the phosphorylation and activation of the corresponding Akt isoforms by PDK1 (phosphoinositide-dependent kinase 1). A model is proposed in which these inhibitors bind to a site formed only in the presence of the PH domain. Binding of the inhibitor is postulated to promote the formation of an inactive conformation. In support of this model, antibodies to the Akt PH domain or hinge region blocked the inhibition of Akt by Akt-I-1 and Akt-I-1,2. These inhibitors were found to be cell-active and to block phosphorylation of Akt at Thr308 and Ser473, reduce the levels of active Akt in cells, block the phosphorylation of known Akt substrates and promote TRAIL (tumour-necrosis-factor-related apoptosis-inducing ligand)-induced apoptosis in LNCap prostate cancer cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference53 articles.

Cited by 377 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3