Relationship of recombination patterns and maternal age among non-disjoined chromosomes 21

Author:

Sherman S.L.1,Lamb N.E.1,Feingold E.2

Affiliation:

1. Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, U.S.A.

2. Department of Human Genetics, University of Pittsburgh, A300 Crabtree Hall, Graduate School of Public Health, 130 Desoto Street, Pittsburgh, PA 15261, U.S.A.

Abstract

Advancing maternal age has long been identified as the primary risk factor for human chromosome trisomy. More recently, altered patterns of meiotic recombination have been found to be associated with non-disjunction. We have used trisomy 21 as a model for human non-disjunction that occurs during the formation of oocytes to understand the role of maternal age and recombination. Patterns of recombination that increase the risk for non-disjunction of chromosome 21 include absence of any exchange, an exchange near the centromere or a single, telomeric exchange. Our recent work has shown that different susceptibility patterns are associated with the origin of the meiotic error and maternal age. For MI (meiosis I) errors, the proportion of oocytes with susceptible recombination patterns is highest among young mothers and decreases significantly in the oldest age group. In fact, the pattern of exchanges among the oldest age group mimics the pattern observed among normally disjoining chromosomes 21. These results suggest that oocytes of younger women, with functional meiotic apparatus and/or robust ovarian environment, are able to properly resolve all but the most susceptible exchange patterns. As women age, however, meiotic mechanisms erode, making it difficult to resolve even stable exchange events. Interestingly, our preliminary recombination results on MII errors reveal the opposite relationship with maternal age: susceptible pericentromeric exchanges occur most often in the older age group compared with the younger age group. If confirmed, we will have further evidence for multiple risk factors for non-disjunction that act at different times in the meiotic process.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aging and oocyte competence: A molecular cell perspective;WIREs Mechanisms of Disease;2023-05-29

2. Chromosome-specific behaviors during early meiosis;Current Topics in Developmental Biology;2023

3. Down Syndrome;Handbook of Pragmatic Language Disorders;2021

4. Mechanisms of oocyte aneuploidy associated with advanced maternal age;Mutation Research/Reviews in Mutation Research;2020-07

5. Detection of paternal origin of fetal trisomy 21 in a pregnancy with isolated ventriculomegaly but without advanced parental age;Taiwanese Journal of Obstetrics and Gynecology;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3