Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases

Author:

HURST Rachel1,BAO Yongping1,JEMTH Per2,MANNERVIK Bengt2,WILLIAMSON Gary1

Affiliation:

1. Department of Biochemistry, Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA, U.K.

2. Department of Biochemistry, Uppsala University, Biochemical Center, Box 576, S-75123, Uppsala, Sweden

Abstract

Human glutathione transferases (GSTs) from Alpha (A), Mu (M) and Theta (T) classes exhibited glutathione peroxidase activity towards phospholipid hydroperoxide. The specific activities are in the order: GST A1-1 > GST T1-1 > GST M1-1 > GST A2-2 > GST A4-4. Using a specific and sensitive HPLC method, specific activities towards the phospholipid hydroperoxide, 1-palmitoyl-2-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl)-l-3-phosphatidylcholine (PLPC-OOH) were determined to be in the range of 0.8–20 nmol/min per mg of protein. Two human class Pi (P) enzymes (GST P1-1 with Ile or Val at position 105) displayed no activity towards the phospholipid hydroperoxide. Michaelis–Menten kinetics were followed only for glutathione, whereas there was a linear dependence of rate with PLPC-OOH concentration. Unlike the selenium-dependent phospholipid hydroperoxide glutathione peroxidase (Se-PHGPx), the presence of detergent inhibited the activity of GST A1-1 on PLPC-OOH. Also, in contrast with Se-PHGPx, only glutathione could act as the reducing agent for GST A1-1. A GST A1-1 mutant (Arg15Lys), which retains the positive charge between the GSH- and hydrophobic binding sites, exhibited a decreased kcat for PLPC-OOH but not for CDNB, suggesting that the correct topography of the GSH site is more critical for the phospholipid substrate. A Met208Ala mutation, which gives a modified hydrophobic site, decreased the kcat for CDNB and PLPC-OOH by comparable amounts. These results indicate that Alpha, Mu and Theta class human GSTs provide protection against accumulation of cellular phospholipid hydroperoxides.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3