Two forms of ‘malic’ enzyme with different regulatory properties in Trypanosoma cruzi

Author:

Cannata J J B,Frasch A C C,Cataldi de Flombaum M A,Segura E L,Cazzulo J J

Abstract

1. Cell-free extracts from culture epimastigotes of Trypanosoma cruzi contained two forms of NADP+-linked ‘malic’ enzyme (EC 1.1.1.40), I and II, with the same molecular weight but different electrophoretic mobilities and kinetic and regulatory properties. 2. The apparent Km for L-malate was lower for ‘malic’ enzyme I, with hyperbolic kinetics, whereas the kinetic pattern for ‘malic’ enzyme II was slightly sigmoidal (h 1.4). The kinetics for NADPH were hyperbolic for ‘malic’ enzyme I, and very complex for ‘malic’ enzyme II, suggesting both positive and negative co-operativity. 3. ‘Malic’ enzyme II was markedly inhibited by adenine nucleotides; AMP was the the most effective, at least in the presence of an excess of MnCl2. ‘Malic’ enzyme I was much less affected by the nucleotides. Both enzyme forms were inhibited by oxaloacetate, competitively towards L-malate, but the apparent Ki for ‘malic’ enzyme I (9 microM) was 10-fold lower than the value for ‘malic’ enzyme II. ‘Malic’ enzyme II, but not ‘malic’ enzyme I, was activated by L-aspartate and succinate (apparent Ka of 0.12 and 0.5 mM respectively); the activators caused a decrease in the apparent Km for L-malate and, to a lesser extent, in the apparent Km for NADP+. L-Aspartate, but not succinate, increased the apparent Vmax. 4. The inhibition by AMP suggests regulation by energy charge, with the L-malate-decarboxylation reaction catalysed by ‘malic’ enzyme II fulfilling a biosynthetic role. The inhibition by oxaloacetate and the activation by succinate are probably involved in the regulation of the ‘partial aerobic fermentation’ of glucose which yields succinate as final product. The activation by L-aspartate would facilitate the catabolism of this amino acid, when present in excess in the growth medium.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3