Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases

Author:

GAZARYAN Irina G.1,LAGRIMINI L. Mark1,ASHBY Gillian A.2,THORNELEY Roger N. F.2

Affiliation:

1. Department of Horticulture, Ohio State University, Columbus, OH 43210-1096, U.S.A. and

2. Nitrogen Fixation Laboratory, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, U.K.

Abstract

Indole-3-acetic acid (IAA) is a powerful plant growth regulator. The oxidative decarboxylation of IAA by plant peroxidases is thought to be a major degradation reaction involved in controlling the in vivo level of IAA. Horseradish peroxidase isoenzyme C and an anionic tobacco peroxidase isolated from transgenic Nicotiana sylvestris have been used in experiments in vitro designed to determine the mechanism of IAA oxidation. In particular, the initial reduction of ferric to ferrous enzyme, a key step in previously proposed mechanisms, has been investigated by rapid-scan stopped-flow spectrophotometry under strictly anaerobic conditions and at defined oxygen concentrations. The data provide the first evidence for a ternary complex comprising peroxidase, IAA and oxygen that is kinetically competent both at the initiation stage and during the catalytic cycle of IAA oxidation. A general scheme describing the oxidative cycles of both anionic and cationic peroxidases is proposed that includes native ferric enzyme and compound II as kinetically competent intermediates. For anionic peroxidases, addition of hydrogen peroxide switches on the oxidative cycle thereby promoting IAA oxidation. 2-Methyl-IAA is not a substrate of the oxidase reaction, suggesting a specific interaction between plant peroxidases and IAA.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3