Affiliation:
1. Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia
2. School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
Abstract
The question of whether the activation of SOCs (store-operated Ca2+ channels) requires the whole or part of the ER (endoplasmic reticulum) has not been fully resolved. The role of a putative sub-compartment of the ER in SOC activation in liver cells was investigated using ectopically expressed TRPV1 (transient receptor potential vanilloid 1), a non-selective cation channel, and TDCA (taurodeoxycholic acid), an activator of SOCs, to release Ca2+ from different regions of the ER. TRPV1 was expressed in the ER and in the plasma membrane. The amount of Ca2+ released from the ER by a TRPV1 agonist, measured using fura-2, was the same as that released by a SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) inhibitor, indicating that TRPV1 agonist-sensitive stores substantially overlap with SERCA inhibitor-sensitive stores. In contrast with SERCA inhibitors, TRPV1 agonists did not activate store-operated Ca2+ entry. These findings were confirmed by patch-clamp recording. Using FFP-18, it was shown that SERCA inhibitors release Ca2+ from the ER located closer to the plasma membrane than the region from which TRPV1 agonists release Ca2+. In contrast with SERCA inhibitors, TRPV1 agonists did not induce a redistribution of STIM1 (stromal interaction molecule 1). TDCA caused the release of Ca2+ from the ER, which was detected by FFP-18 but not by fura-2, and a redistribution of STIM1 to puncta similar to that caused by SERCA inhibitors. It is concluded that in liver cells, Ca2+ release from a small component of the ER located near the plasma membrane is required to induce STIM1 redistribution and SOC activation.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献