Unique features of selenocysteine incorporation function within the context of general eukaryotic translational processes

Author:

Small-Howard A.L.1,Berry M.J.1

Affiliation:

1. Department of Cell and Molecular Biology, University of Hawaii at Manoa, 1960 East-West Road, T514, Honolulu, HI 96822, U.S.A.

Abstract

Unlike other essential dietary trace elements, selenium exerts its biological actions through its direct incorporation into selenoproteins, as a part of the 21st amino acid, selenocysteine. Fundamental studies have elucidated the unique structures and putative functions of multiple co-translational factors required for the incorporation of selenocysteine into selenoproteins. The current challenge is to understand how these selenocysteine incorporation factors function within the framework of translation. In eukaryotes, co-ordinating nuclear transcription with cytoplasmic translation of genes is a challenge involving complex spatial and temporal regulation. Selenoproteins utilize the common cellular machinery required for synthesis of non-selenoproteins. This machinery includes the elements involved in transcription, mRNA splicing and transport, and translational processes. Many investigators have emphasized the differences between the expression of selenoproteins and other eukaryotic proteins, whereas this review will attempt to highlight common themes and point out where additional interactions may be discovered.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3