Steady-state kinetics and inhibition of anaerobically purified human homogentisate 1,2-dioxygenase

Author:

VELDHUIZEN Edwin J. A.1,VAILLANCOURT Frédéric H.2,WHITING Cheryl J.1,HSIAO Marvin M.-Y.2,GINGRAS Geneviève3,XIAO Yufang3,TANGUAY Robert M.4,BOUKOUVALAS John3,ELTIS Lindsay D.12

Affiliation:

1. Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Blvd, Vancouver, BC, Canada V6T 1Z3

2. Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3

3. Department of Chemistry, Université Laval, Quebec City, QC, Canada G1K 7P4

4. Laboratoire de Génétique Cellulaire et Développementale, Département de Médecine, Pavillon Marchand, Université Laval, Quebec City, QC, Canada G1K 7P4

Abstract

HGO (homogentisate 1,2-dioxygenase; EC 1.13.11.5) catalyses the O2-dependent cleavage of HGA (homogentisate) to maleylacetoacetate in the catabolism of tyrosine. Anaerobic purification of heterologously expressed Fe(II)-containing human HGO yielded an enzyme preparation with a specific activity of 28.3± 0.6 μmol·min−1·mg−1 (20 mM Mes, 80 mM NaCl, pH 6.2, 25 °C), which is almost twice that of the most active preparation described to date. Moreover, the addition of reducing agents or other additives did not increase the specific activity, in contrast with previous reports. The apparent specificity of HGO for HGA was highest at pH 6.2 and the steady-state cleavage of HGA fit a compulsory-order ternary-complex mechanism (Km value of 28.6±6.2 μM for HGA, Km value of 1240±160 μM for O2). Free HGO was subject to inactivation in the presence of O2 and during the steady-state cleavage of HGA. Both cases involved the oxidation of the active site Fe(II). 3-Cl HGA, a potential inhibitor of HGO, and its isosteric analogue, 3-Me HGO, were synthesized. At saturating substrate concentrations, HGO cleaved 3-Me and 3-Cl HGA 10 and 100 times slower than HGA respectively. The apparent specificity of HGO for HGA was approx. two orders of magnitude higher than for either 3-Me or 3-Cl HGA. Interestingly, 3-Cl HGA inactivated HGO only twice as rapidly as HGA. This contrasts with what has been observed in mechanistically related dioxygenases, which are rapidly inactivated by chlorinated substrate analogues, such as 3-hydroxyanthranilate dioxygenase by 4-Cl 3-hydroxyanthranilate.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3