Handheld bioprinting strategies for in situ wound dressing

Author:

Li Hongbin12,Cheng Feng1,Orgill Dennis P.3,Yao Junjie4,Zhang Yu Shrike1ORCID

Affiliation:

1. Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, U.S.A.

2. College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, P.R. China

3. Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, U.S.A.

4. Department of Biomedical Engineering, Duke University, Durham, NC 27708, U.S.A.

Abstract

Abstract Handheld bioprinting has recently attracted considerable attention as a technology to deliver biomaterials and/or cells to injury sites by using freeform, user-instructed deposition approaches, specifically targeted towards in situ wound dressing and healing. In this review, we present a concise introduction of handheld bioprinting, and a thorough discussion on design and manufacture of handheld bioprinters and choice over bioinks. Finally, the advantages, challenges, and prospective of the said technologies are elaborated. It is believed that handheld bioprinting will play an essential role in the field of in situ wound healing mainly due to its excellent portability, user-friendliness, cost-effectiveness, and amenability to various wound needs.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3