The in situ observation of the temperature and pressure stability of recombinant Aspergillus aculeatus pectin methylesterase with Fourier transform IR spectroscopy reveals an unusual pressure stability of β-helices

Author:

Dirix Carolien1,Duvetter Thomas2,Loey Ann Van2,Hendrickx Marc2,Heremans Karel1

Affiliation:

1. Department of Chemistry, Faculty of Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium

2. Centre of Food and Microbial Technology, Faculty of Applied Biosciences and Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium

Abstract

The stability of recombinant Aspergillus aculeatus PME (pectin methylesterase), an enzyme with high β-helix content, was studied as a function of pressure and temperature. The conformational stability was monitored using FTIR (Fourier transform IR) spectroscopy whereas the functional enzyme stability was monitored by inactivation studies. Protein unfolding followed by amorphous aggregation, which makes the process irreversible, was observed at temperatures above 50 °C. This could be correlated to the irreversible enzyme inactivation observed at that temperature. Hydrostatic pressure greater than 1 GPa was necessary to induce changes in the enzyme's secondary structure. No enzyme inactivation was observed at up to 700 MPa. Pressure increased PME stability towards thermal denaturation. At 200 MPa, temperatures above 60 °C were necessary to cause significant PME unfolding and loss of activity. These results may be relevant for an understanding of the extreme stability of amyloid fibrils for which β-helices have been proposed as a structural element.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3