Endothelin-converting enzyme-like 1 (ECEL1) is present both in the plasma membrane and in the endoplasmic reticulum

Author:

BENOIT Alexandre1,VARGAS Miguel Angel1,DesGROSEILLERS Luc1,BOILEAU Guy1

Affiliation:

1. Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Qc, Canada H3C 3J7

Abstract

Enzymes of the M13 family of zinc-containing endopeptidases are recognized as important regulators of neuropeptide and peptide hormone activity. Peptidases of this family are type II integral-membrane proteins characterized by short cytosolic domains and large extracellular domains containing the active site. The M13 family has, at present, seven members, including ECEL1 (endothelin-converting enzyme-like 1), one of the newest members. ECEL1 is expressed predominantly in the central nervous system. It has been proposed that the enzyme has a role in the nervous regulation of the respiratory system. No physiological substrate has been identified yet. To better understand the function(s) of this enzyme, we have expressed human ECEL1 in cultured cells and monitored its biosynthesis and subcellular localization. Immunoblot and cell-surface biotinylation analysis of transfected cells expressing ECEL1 showed that only a fraction of the protein travelled to the cell surface, while most of the enzyme was present in an intracellular compartment identified by confocal immunofluorescence microscopy and cell fractionation as the ER (endoplasmic reticulum). Pulse–chase experiments showed that ER-localized ECEL1 was stable, with a half-life of more than 3 h. Endogenous ECEL1 from mouse pituitary gland had a similar distribution between the cell surface and the ER. Finally, using domain-swapping experiments with neprilysin, another member of the M13 family, we showed that localization of ECEL1 to the ER requires both the transmembrane and cytoplasmic domains. It thus appears that ECEL1 may have functions both at the cell surface and in the ER.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3