microRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene

Author:

Gillen Austin E.1,Gosalia Nehal1,Leir Shih-Hsing1,Harris Ann1

Affiliation:

1. Human Molecular Genetics Program, Children's Memorial Research Center, Chicago, IL 60614, U.S.A., and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A.

Abstract

The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex temporal and spatial pattern of expression that is controlled by multiple cis-acting elements interacting with the basal promoter. Although significant progress has been made towards understanding these genomic elements, there have been no reports of post-transcriptional regulation of CFTR by miRNAs (microRNAs). In the present study, we identify two miRNAs, hsa-miR-145 and hsa-miR-494, which regulate CFTR expression by directly targeting discrete sites in the CFTR 3′ UTR (untranslated region). We show that at least 12 miRNAs are capable of repressing endogenous CFTR mRNA expression in the Caco-2 cell line. Ten of these also inhibit expression of a reporter construct containing the CFTR 3′ UTR in one or more cell lines, and five repress endogenous CFTR protein expression in Caco-2 cells. Moreover, at least three are expressed in primary human airway epithelial cells, where CFTR expression is maintained at low levels in comparison with intestinal cell lines. Three of the miRNAs that target CFTR, hsa-miR-384, hsa-miR-494 and hsa-miR-1246, also inhibit expression of a reporter carrying the Na+–K+–Cl− co-transporter SLC12A2 [solute carrier family 12 (Na+–K+–Cl− transporters), member 2] 3′ UTR, suggesting that these miRNAs may play a more general role in regulating chloride transport in epithelial cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference49 articles.

1. Identification of the cystic fibrosis gene: chromosome walking and jumping;Rommens;Science,1989

2. Transcriptional regulation of CFTR gene expression;Gillen;Front. Biosci.,2011

3. Genomic approaches for the discovery of CFTR regulatory elements;Ott;Transcription,2010

4. CTCF mediates insulator function at the CFTR locus;Blackledge;Biochem. J.,2007

5. An insulator element 3′ to the CFTR gene binds CTCF and reveals an active chromatin hub in primary cells;Blackledge;Nucleic Acids Res.,2009

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3