Regulation of the GLUT1 glucose transporter in cultured myocytes: total number and subcellular distribution as determined by photoaffinity labelling

Author:

el-Kebbi I M1,Roser S1,Pollet R J1,Cushman S W2,Wilson C M2

Affiliation:

1. Department of Medicine, Atlanta VA Medical Center and Emory University School of Medicine, Decatur, GA 30033, U.S.A.

2. Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, U.S.A.

Abstract

We have used the impermeant photoaffinity label 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-[2-3H] 1,3-bis-(D-mannos-4-yloxy)-2-propylamine (ATB-[2-3H]BMPA) to identify and quantify the glucose transporters on the surface of BC3H-1 cells, a continuously cultured skeletal-muscle cell line lacking the MyoD transcription factor required for cell fusion. ATB-[2-3H]BMPA was used in combination with immunoprecipitation of the GLUT1 glucose transporter, the only isoform expressed in these cells. The total cellular GLUT1 content was also determined by photolabelling and immunoprecipitation after cell permeabilization with digitonin (0.025%). In glucose-starved cells, 85% of the glucose transporters were present at the cell surface in the basal state, with little change in response to insulin (200 nM), correlating with lack of additional 2-deoxyglucose uptake in response to insulin. Feeding the cells with glucose (25 mM) for 24 h resulted in an 80% decrease in the total GLUT1 content relative to starved cells, of which only 25% were present on the cell surface. This was associated with an 85% decrease in 2-deoxyglucose uptake. In addition, acute stimulation of the fed cells with insulin or phorbol 12-myristate 13-acetate (PMA) led to an increase in GLUT1 at the cell surface, and, in correspondence, an increase in 2-deoxyglucose uptake by approx. 2- and 4-fold respectively. We conclude that exofacial photoaffinity labelling of glucose transporters with ATB-[2-3H]BMPA in the presence and absence of digitonin, followed by specific immunoprecipitation, provides an accurate measure of total and cell-surface glucose transporters in differentiated BC3H-1 muscle cells. This technique demonstrates that glucose pre-feeding (1) decreases the total number of GLUT1 and (2) redistributes the majority of the remaining transporters to an intracellular site, where they can now be translocated to the cell surface in response to insulin and PMA.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3