Effects of noradrenaline on the cell-surface glucose transporters in cultured brown adipocytes: novel mechanism for selective activation of GLUT1 glucose transporters

Author:

SHIMIZU Yasutake1,SATOH Shinobu2,YANO Hajime1,MINOKOSHI Yasuhiko1,CUSHMAN W. Samuel3,SHIMAZU Takashi1

Affiliation:

1. Department of Medical Biochemistry, Ehime University School of Medicine, Shigenobu, Ehime 791-02, Japan

2. Third Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama 236, Japan

3. Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, U.S.A.

Abstract

Glucose transport into rat brown adipocytes has been shown to be stimulated directly by the sympathetic neurotransmitter, noradrenaline, without a significant increase in the protein content of either GLUT1 or GLUT4 glucose transporter in the plasma membrane [Shimizu, Kielar, Minokoshi and Shimazu (1996) Biochem. J.314, 485-490]. In the present study, we labelled the exofacial glucose-binding sites of GLUT1 and GLUT4 with a membrane-impermeant photoaffinity reagent, 2-N-[4-(1-azitrifluoroethyl)benzoyl]-[2-3H]1,3-bis-(D-mannos-4-yloxy)-2-propylamine (ATB-[3H]BMPA), to determine which isoform is responsible for the noradrenaline-induced increase in glucose transport into intact brown adipocytes in culture. Insulin stimulated the rate of hexose transport by increasing ATB-[3H]BMPA-labelled cell-surface GLUT4. In contrast, the noradrenaline-induced increase in glucose transport was not accompanied by an increased ATB-[3H]BMPA labelling of GLUT4, nor with an increased amount of GLUT4 in the plasma membrane fraction as assessed by Western blotting, indicating that noradrenaline does not promote the translocation of GLUT4. However, noradrenaline induced an increase in photoaffinity labelling of cell-surface GLUT1 without an apparent increase in the immunoreactive GLUT1 protein in the plasma membrane. This is suggestive of an increased affinity of GLUT1 for the ligand. In fact, the Ki value of non-radioactive ATB-BMPA for 2-deoxy-d-glucose uptake was significantly decreased after treatment of the cells with noradrenaline. The increased photoaffinity labelling of GLUT1 and increased glucose transport caused by noradrenaline were inhibited by a cAMP antagonist, cAMP-S Rp-isomer. These results demonstrate that noradrenaline stimulates glucose transport in brown adipocytes by enhancing the functional activity of GLUT1 through a cAMP-dependent mechanism.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3