Carotid body: an emerging target for cardiometabolic co‐morbidities

Author:

Thakkar Pratik1ORCID,Pauza Audrys G.1,Murphy David2,Paton Julian F. R.1

Affiliation:

1. Manaaki Manawa – the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand

2. Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences University of Bristol Bristol UK

Abstract

New Findings What is the topic of this review? Regarding the global metabolic syndrome crisis, this review focuses on common mechanisms for high blood sugar and high blood pressure. Connections are made between the homeostatic regulation of blood pressure and blood sugar and their dysregulation to reveal signalling mechanisms converging on the carotid body. What advances does it highlight? The carotid body plays a major part in the generation of excessive sympathetic activity in diabetes and also underpins diabetic hypertension. As treatment of diabetic hypertension is notoriously difficult, we propose that novel receptors within the carotid body may provide a novel treatment strategy. AbstractThe maintenance of glucose homeostasis is obligatory for health and survival. It relies on peripheral glucose sensing and signalling between the brain and peripheral organs via hormonal and neural responses that restore euglycaemia. Failure of these mechanisms causes hyperglycaemia or diabetes. Current anti‐diabetic medications control blood glucose but many patients remain with hyperglycemic condition. Diabetes is often associated with hypertension; the latter is more difficult to control in hyperglycaemic conditions. We ask whether a better understanding of the regulatory mechanisms of glucose control could improve treatment of both diabetes and hypertension when they co‐exist. With the involvement of the carotid body (CB) in glucose sensing, metabolic regulation and control of sympathetic nerve activity, we consider the CB as a potential treatment target for both diabetes and hypertension. We provide an update on the role of the CB in glucose sensing and glucose homeostasis. Physiologically, hypoglycaemia stimulates the release of hormones such as glucagon and adrenaline, which mobilize or synthesize glucose; however, these counter‐regulatory responses were markedly attenuated after denervation of the CBs in animals. Also, CB denervation prevents and reverses insulin resistance and glucose intolerance. We discuss the CB as a metabolic regulator (not just a sensor of blood gases) and consider recent evidence of novel ‘metabolic’ receptors within the CB and putative signalling peptides that may control glucose homeostasis via modulation of the sympathetic nervous system. The evidence presented may inform future clinical strategies in the treatment of patients with both diabetes and hypertension, which may include the CB.

Publisher

Wiley

Subject

Physiology,Physiology (medical),Nutrition and Dietetics,Physiology,Physiology (medical),Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3