The reaction of aldolase with 2-methylmaleic anhydride

Author:

Gibbons I.1,Perham R. N.1

Affiliation:

1. Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K.

Abstract

1. The reaction of rabbit muscle aldolase with 2-methylmaleic anhydride is described. All the protein amino groups can be reversibly blocked. 2. As the reaction proceeds, the enzyme activity decreases until, at about 50% citraconylation of amino groups, the enzyme is completely inhibited. At this stage, little or no dissociation of the enzyme tetramer is observed and 75% of the activity is recoverable on unblocking the amino groups. 3. At 80% blocking, the enzyme is completely dissociated but little enzymic activity is recoverable after unblocking. Inability to recover activity after citraconylation and unblocking correlates with the onset of dissociation of the citraconyl-aldolase seen on ultracentrifugation. 4. The only irreversible modification of the enzyme primary structure detectable after the citraconylation and unblocking reactions is the partial loss of thiol groups. It is probable that this is responsible for the inability to reform active enzyme from the citraconylated subunit. 5. Other reversible side reactions of maleic anhydride and citraconic anhydride that may occur with proteins are discussed.

Publisher

Portland Press Ltd.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Use of Group-Specific Reagents in Active Site Functional Group Elucidation II: Asp, Glu, Arg, Lys, and His Residues;Frontiers in Protein Structure, Function, and Dynamics;2020

2. Protein Reactivity of 3,4-Dihydroxyphenylacetaldehyde, a Toxic Dopamine Metabolite, Is Dependent on Both the Aldehyde and the Catechol;Chemical Research in Toxicology;2009-06-19

3. PRIMARY STRUCTURE OF EQUINE GROWTH HORMONE;International Journal of Peptide and Protein Research;2009-01-12

4. REVERSIBLE MODIFICATION OF LYSINE IN β-LACTOGLOBULIN USING CITRACONIC ANHYDRIDE;International Journal of Peptide and Protein Research;2009-01-12

5. Porcine Pancreatic Lipase;European Journal of Biochemistry;2005-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3