Apolipoprotein E includes a binding site which is recognized by several amyloidogenic polypeptides

Author:

BAUMANN Marc H.1,KALLIJÄRVI Jukka1,LANKINEN Hilkka2,SOTO Claudio3,HALTIA Matti4

Affiliation:

1. Institute of Biomedicine, Protein Chemistry Education and Research Unit, P.O. Box 8, FIN-00014 University of Helsinki, Finland

2. Haartman Institute, Department of Virology, Peptide and Protein Laboratory, P.O. Box 21, FIN-00014 University of Helsinki, Finland

3. Department of Pathology, New York University Medical Center, New York, NY 10016, U.S.A.

4. Haartman Institute, Department of Pathology, P.O. Box 21, FIN-00014 University of Helsinki, Finland

Abstract

Inheritance of the apolipoprotein E (apoE) ϵ4 allele is a risk factor for late-onset Alzheimer's disease (AD). Biochemically apoE is present in AD plaques and neurofibrillary tangles of the AD brain. There is a high avidity and specific binding of apoE and the amyloid β-peptide (Aβ). In addition to AD apoE is also present in many other cerebral and systemic amyloidoses, Down's syndrome and prion diseases but the pathophysiological basis for its presence is still unknown. In the present study we have compared the interaction of apoE with Aβ, the gelsolin-derived amyloid fragment AGel183-210 and the amyloidogenic prion fragments PrP109-122 and PrP109-141. We show that, similar to Aβ, also AGel and PrP fragments can form a complex with apoE, and that the interaction between apoE and the amyloidogenic protein fragments is mediated through the same binding site on apoE. We also show that apoE increases the thioflavin-T fluorescence of PrP and AGel and that apoE influences the content of β-sheet conformation of these amyloidogenic fragments. Our results indicate that amyloids and amyloidogenic prion fragments share a similar structural motif, which is recognized by apoE, possibly through a single binding site, and that this motif is also responsible for the amyloidogenicity of these fragments.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3