Utilization of energy-providing substrates in the isolated working rat heart

Author:

Taegtmeyer H,Hems R,Krebs H A

Abstract

1. An improved perfusion system for the isolated rat heart is described. It is based on the isolated working heart of Neely, Liebermeister, Battersby & Morgan (1967) (Am. J. Physiol. 212, 804-814) and allows the measurement of metabolic rates and cardiac performance at a near-physiological workload. The main improvements concern better oxygenation of the perfusion medium and greater versatility of the apparatus. Near-physiological performance (cardiac output and aortic pressure) was maintained for nearly 2 h as compared with 30 min or less in the preparations of earlier work. 2. The rates of energy release (O2 uptake and substrate utilization) were 40-100% higher than those obtained by previous investigators, who used hearts at subphysiological workloads. 3. Values are given for the rates of utilization of glucose, lactate, oleate, acetate and ketone bodies, for O2 consumption and for the relative contributions of various fuels to the energy supply of the heart. Glucose can be replaced to a large extent by lactate, oleate or acetate, but not by ketone bodies. 4. Apart from quantitative differences there were also major qualitative differences between the present and previous preparations. Thus insulin was not required for maximal rates of glucose consumption at near-physiological, in contrast with subphysiological, workloads when glucose was the sole added substrate. When glucose oxidation was suppressed by the addition of other oxidizable substrates (lactate, acetate or acetoacetate), insulin increased the contribution of glucose as fuel for cardiac energy production at high workload. 5. In view of the major effects of workload on cardiac metabolism, experimentation on hearts performing subphysiologically or unphysiologically is of limited value to the situation in vivo.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 474 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3