ATP-dependent citrate lyase Drives Left Ventricular Dysfunction by Metabolic Remodeling of the Heart

Author:

Liu Shijie,Gammon Seth T.,Tan Lin,Gao Yaqi,Kim Kyoungmin,Williamson Ian K.,Pham Janet,Davidian Angela,Khanna Radhika,Gould Benjamin D.,Salazar Rebecca,Vitrac Heidi,Dinh An,Lien Evan C.,de L. Vitorino Francisca N.,Gongora Joanna M.,Martinez Sara A.,Lawrence Czer S. C.,Kransdorf Evan P.,Leffer David,Hanson Blake,Garcia Benjamin A.,Vander Heiden Matthew G.ORCID,Lorenzi Philip L.,Taegtmeyer Heinrich,Piwnica-Worms David,Martin James F.ORCID,Karlstaedt AnjaORCID

Abstract

ABSTRACTBackgroundMetabolic remodeling is a hallmark of the failing heart. Oncometabolic stress during cancer increases the activity and abundance of the ATP-dependent citrate lyase (ACL,Acly), which promotes histone acetylation and cardiac adaptation. ACL is critical for the de novo synthesis of lipids, but how these metabolic alterations contribute to cardiac structural and functional changes remains unclear.MethodsWe utilized human heart tissue samples from healthy donor hearts and patients with hypertrophic cardiomyopathy. Further, we used CRISPR/Cas9 gene editing to inactivateAclyin cardiomyocytes of MyH6-Cas9 mice.In vivo,positron emission tomography andex vivostable isotope tracer labeling were used to quantify metabolic flux changes in response to the loss of ACL. We conducted a multi-omics analysis using RNA-sequencing and mass spectrometry-based metabolomics and proteomics. Experimental data were integrated into computational modeling using the metabolic network CardioNet to identify significantly dysregulated metabolic processes at a systems level.ResultsHere, we show that in mice, ACL drives metabolic adaptation in the heart to sustain contractile function, histone acetylation, and lipid modulation. Notably, we show that loss of ACL increases glucose oxidation while maintaining fatty acid oxidation.Ex vivoisotope tracing experiments revealed a reduced efflux of glucose-derived citrate from the mitochondria into the cytosol, confirming that citrate is required for reductive metabolism in the heart. We demonstrate that YAP inactivation facilitates ACL deficiency. Computational flux analysis and integrative multi-omics analysis indicate that loss of ACL induces alternative isocitrate dehydrogenase 1 flux to compensate.ConclusionsThis study mechanistically delineates how cardiac metabolism compensates for suppressed citrate metabolism in response to ACL loss and uncovers metabolic vulnerabilities in the heart.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3